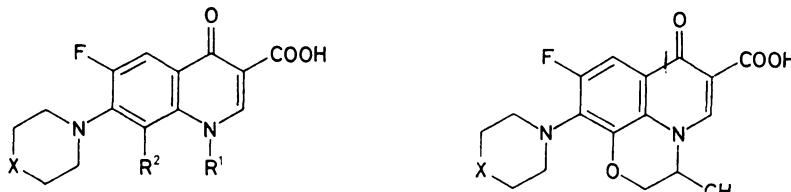


SYNTHESIS AND ANTIBACTERIAL ACTIVITY OF NEW 7-SUBSTITUTED FLUOROQUINOLONES

Stanislav RÁDL and Lenka KOVÁŘOVÁ

Research Institute for Pharmacy and Biochemistry, 130 60 Prague 3

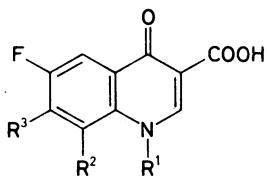

Received November 21, 1990

Accepted December 25, 1990

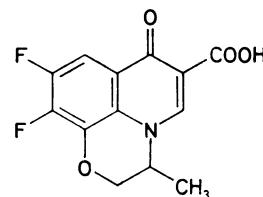
Dedicated to Dr Miroslav Protiva on the occasion of his 70th birthday.

Reaction of substituted 3-carboxyquinolone derivatives *IIIa*, *IIIb*, *IIIc*, and *IV* with 4-pyridone ethylene ketal in pyridine afforded corresponding 7-substituted derivatives *VIa*, *VIb*, *VIc*, and *VIIa*, respectively. Acidic deprotection of these compounds yielded respective oxo derivatives *VId*, *Vle*, *VIf*, and *VIIb* which were converted to their oximes *If*, *Ig*, *Ih*, and *IIb*.

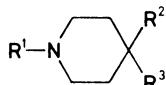
Some antibacterial quinolones have been proven to be clinically important drugs^{1,2}. It has been shown that C-7 substituent together with the presence of C-6 fluorine substituent has a major influence on the antibacterial activity. Most of the currently significant fluoroquinolones, as norfloxacin (*Ia*), pefloxacin (*Ib*), ciprofloxacin (*Ic*), and ofloxacin (*IIa*), contain 1-piperazinyl or 4-methyl-1-piperazinyl group at this position². Recently 7-(4-hydroxy-1-piperazinyl) quinolone derivatives *Id* and *Ie* have been reported to be more potent than the corresponding 1-piperazinyl derivatives *Ia* and *Ic*. A QSAR study³ revealed that good activity could be achieved for


Ia, R¹ = C₂H₅; R² = H; X = NH*Ib*, R¹ = C₂H₅; R² = H; X = NCH₃*Ic*, R¹ = cyclopropyl; R² = H; X = NH*Id*, R¹ = C₂H₅; R² = H; X = NOH*Ie*, R¹ = cyclopropyl; R² = H; X = NOH*If*, R¹ = C₂H₅; R² = H; X = C=NOH*Ig*, R¹ = cyclopropyl; R² = H; X = C=NOH*Ih*, R¹ = C₂H₅; R² = F; X = C=NOH*IIa*, X = NCH₃*IIb*, X = C=NOH

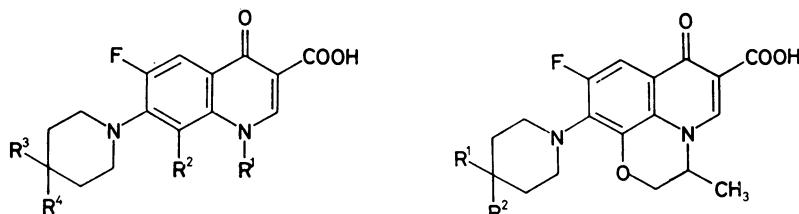
STERIMOL lengths of C-7 substituents in range of 0.5 to 0.9 nm. These facts inspired us to prepare compounds *If*, *Ig*, and *Iib* having at the position oximes of an 4-oxo-1-piperidino group. These compounds have also a N—OH fragment and STERIMOL length of the substituent is inside the optimal range. Since some 6,8-difluoro quinolones are more potent than corresponding 6-fluoro derivatives² we prepared also compound *Ih*. We report here the synthesis of these compounds and their antibacterial potency.


Desired quinolone intermediate compounds *IIIa* (ref.⁴), *IIIb* (ref.⁵), *IIIc* (ref.⁶), and *IV* (ref.⁷) were prepared according to the literature cited here. As a C-7 moiety we chose *Vc*. Reaction of N-benzyl-4-piperidone (*Va*) with 1,2-dihydroxyethane was performed in usual way and provided corresponding ketal *Vb* in good yield. N-Debenzylation of *Vb* was performed by catalytic hydrogenation on 5% palladium on charcoal providing *Vc*.

Reaction of quinolone intermediates *IIIa* and *IIIb* with *Vc* was performed in pyridine at 110°C. Nucleophilic displacement reaction of pyrido[1,2,3-*de*][1,4]benzoxazine *IV* was much faster and could be performed at lower temperature. The most reactive 6,7,8-trifluoro derivative *IIIc* yielded smoothly compound *VIc* at temperature 50–60°C.


Compounds *VIa*–*VIc*, *VIIa* were converted to *VIId*–*VIIf*, *VIIb* under acidic condi-

IIIa, R¹=C₂H₅; R²=H; R³=Cl
IIIb, R¹=cyclopropyl; R²=H; R³=Cl
IIIc, R¹=C₂H₅; R²=F; R³=F



IV

Va R¹=benzyl; R², R³=O
Vb R¹=benzyl; R², R³=OCH₂CH₂O
Vc R¹=H; R², R³=OCH₂CH₂O

tions. The best results were obtained with the use of *p*-toluenesulfonic acid. Oxo derivatives *VI**d*–*VI**f*, *VII**b* were treated with hydroxylamine in ethanol and provided corresponding oximes *II**f*–*II**h*, and *II**b*.

*VI**a*, R¹ = C₂H₅; R² = H; R³, R⁴ = OCH₂CH₂O

*VI**b*, R¹ = cyclopropyl; R² = H; R³, R⁴ = OCH₂CH₂O

*VI**c*, R¹ = C₂H₅; R² = F; R³, R⁴ = OCH₂CH₂O

*VI**d*, R¹ = C₂H₅; R² = H; R³, R⁴ = O

*VI**e*, R¹ = cyclopropyl; R² = H; R³, R⁴ = O

*VI**f*, R¹ = C₂H₅; R² = F; R³, R⁴ = O

*VII**a*, R¹, R² = OCH₂CH₂O

*VII**b*, R¹, R² = O

All the prepared compounds were tested for their antimicrobial activity *in vitro* at the Department of Microbiology of the Institute (Dr V. Holá, Head). Norfloxacin (*I**a*) was used as a standard. The minimum inhibitory concentrations in mg/l are given in Table I which summarizes the *in vitro* activity against Gram positive bacteria (*Staphylococcus aureus* 1/45, *Streptococcus pyogenes* 4/49, *Streptococcus faecalis* D 16/66) and Gram negative organisms (*Escherichia coli* 326/61, *Proteus vulgaris* 2/35, *Pseudomonas aeruginosa* 26/56). The organisms are from the State Collection of Strains, Prague. It is evident that all three types of compounds, i.e. 7-(4-oxopiperidine) derivatives, their ethylene ketals, and their oximes, have interesting antibacterial activities especially against Gram negative strains. More detailed results of their antibacterial activities will be published elsewhere.

EXPERIMENTAL

The melting points were determined on a Mettler FP 5 apparatus, and were not corrected. IR spectra were taken on a Unicam SP-2006 spectrometer in KBr pellets; wavenumbers are given in cm⁻¹. UV spectra were taken on a Unicam PU 8800 spectrophotometer in ethanol, molar absorption coefficients (ϵ) are given in m² mol⁻¹, wavelengths (λ) in nm. Mass spectra were measured on MCH 1320 and MAT 44 S spectrometers. ¹H NMR spectra (100 MHz) were measured on an apparatus BS-487 (Tesla Brno) 100 MHz in deuterated chloroform with tetramethylsilane as an internal standard, unless otherwise stated. Chemical shifts are given in ppm (δ -scale), coupling constants (J) in Hz. The assignments indicated by an asterisk may be interchanged.

1-Benzyl-4-piperidone Ethylene Ketal (*Vb*)

A mixture of 1-benzyl-4-piperidone (1.9 g, 10 mmol), 4-toluenesulfonic acid monohydrate (3 g, 15.8 mmol), ethylene glycol (5 g, 80 mmol), and toluene (70 ml) was refluxed using Dean-Stark apparatus for 10 h. The mixture was neutralized with saturated aqueous solution of sodium hydrogen carbonate, then washed with water and the toluene solution was dried with magnesium sulfate. Vacuum distillation provided 2 g (87%) of colourless oil, b.p. 142–144°C/265–330 Pa. For $C_{14}H_{19}NO_2$ (233.3) calculated: 72.07% C, 8.21% H, 6.00% N; found: 72.39% C, 8.35% H, 5.96% N. 1H NMR spectrum ($CDCl_3$): 1.70 bt*, 4 H (H-2, H-6); 2.49 bt*, 4 H (H-3, H-5); 3.48 s, 2 H (N—CH₂); 3.88 s, 4 H (O—CH₂); 7.24 m, 5 H (phenyl).

4-Piperidone Ethylene Ketal (*Vc*)

A solution of *Vb* (23.3 g, 0.1 mol) in methanol (230 ml) was hydrogenated on 5% palladium on charcoal (3 g) at room temperature until the required volume of hydrogen had been taken up (6 h), the catalyst was removed by filtration, methanol distilled off and vacuum distillation of the residue yielded 10.5 g (85%) of *Vc*, b.p. 70°C/160 Pa. For $C_7H_{13}NO_2$ (143.2) calculated: 58.72% C, 9.15% H, 9.78% N; found: 58.36% C, 9.34% H, 9.40% N. 1H NMR spectrum ($CDCl_3$): 1.68 bt*, 4 H (H-2, H-6); 1.85 s, 1 H (N—H); 2.97 bt*, 4 H (H-3, H-5); 4.00 s, 4 H (O—CH₂).

TABLE I
In vitro antibacterial activity (MIC given in mg/l)

Compound	Organisms ^a					
	1	2	3	4	5	6
<i>Ia</i>	2	16	2	1	1	1
<i>If</i>	8	8	2	2	1	1
<i>Ig</i>	8	2	1	1	1	1
<i>Ih</i>	16	4	2	1	1	1
<i>IIb</i>	8	2	1	1	1	1
<i>VIa</i>	16	16	4	2	1	1
<i>VIb</i>	32	4	2	1	1	1
<i>VIc</i>	16	8	2	1	1	1
<i>VID</i>	4	16	4	2	1	1
<i>VIe</i>	32	4	2	1	1	1
<i>VIf</i>	4	4	1	1	1	1
<i>VIIa</i>	32	4	2	1	1	1
<i>VIIb</i>	4	2	1	1	1	1

^a 1 — *Staphylococcus aureus*; 2 — *Streptococcus pyogenes*; 3 — *Streptococcus faecalis*; 4 — *Escherichia coli*; 5 — *Proteus vulgaris*; 6 — *Pseudomonas aeruginosa*.

TABLE II
Physico-chemical properties of compounds *I*_f–*I*_h, *II*_b, *VI*_d–*VI*_f

Product m.p., °C	Starting compound	Yield, % time, h	Formula (M.w.)	Calculated/Found			
				% C	% H	% F	% N
<i>I</i> _f 261–262	<i>VI</i> _d	85	$C_{17}H_{18}FN_3O_4$	58.78	5.22	5.47	12.10
		4	(347.4)	58.39	4.88	5.51	11.81
<i>I</i> _g 263–263.5	<i>VI</i> _e	85	$C_{18}H_{18}FN_3O_4$	60.16	5.05	5.29	11.69
		4	(359.4)	59.82	5.32	5.19	11.41
<i>I</i> _h 237.5–238	<i>VI</i> _f	87	$C_{17}H_{17}F_2N_3O_4$	55.89	4.69	10.40	11.50
		2	(365.3)	55.55	4.78	10.14	11.34
<i>II</i> _b ^a 251.5–252	<i>VI</i> _{lb}	85	$C_{18}H_{18}FN_3O_5$	57.60	4.83	5.06	11.19
		4	(375.4)	57.46	4.87	5.00	11.32
<i>VI</i> _d 233–235	<i>VI</i> _a	90	$C_{17}H_{17}FN_2O_4$	61.44	5.16	5.72	8.43
		16	(332.3)	61.07	5.26	5.67	8.47
<i>VI</i> _e ^b 255–274 ^c	<i>VI</i> _b	90	$C_{18}H_{17}FN_2O_4$	62.78	4.98	5.52	8.14
		8	(344.3)	62.90	5.28	5.35	8.56
<i>VI</i> _f 286–287	<i>VI</i> _c	90	$C_{17}H_{16}F_2N_2O_4$	58.29	4.60	10.85	8.00
		8	(350.3)	58.40	4.80	10.92	7.84
<i>VI</i> _{lb} 259 ^c	<i>VI</i> _{la}	90	$C_{18}H_{17}FN_2O_5$	60.00	4.76	5.27	7.77
		12	(360.3)	59.58	4.85	5.13	7.57

^a Mass spectrum $m/z = 375$ (M^+); ^b mass spectrum $m/z = 344$ (M^+); ^c decomposition.

TABLE III
IR spectra of fluoroquinolone derivatives

Compound	C=O ^a	C=O ^b	COO	COOH	C=N	N—OH
<i>I</i> _f	1 630	—	1 735	945	1 612	3 310
<i>I</i> _g	1 625	—	1 720	970	1 610	3 250
<i>I</i> _h	1 620	—	1 735	943	1 610	3 300
<i>II</i> _b	1 619	—	1 701	917	1 610	3 300
<i>VI</i> _d	1 628	1 705 ^c	1 710	998	—	—
<i>VI</i> _e	1 628	1 718 ^c	1 727	987	—	—
<i>VI</i> _f	1 628	1 710	1 730	965	—	—
<i>VI</i> _{lb}	1 620	1 710 ^c	1 715	977	—	—

^a C=O of quinolone; ^b C=O of piperidone; ^c weak signal.

1-Ethyl-6-fluoro-1,4-dihydro-7-(1,4-dioxa-8-azaspiro-[4,5]decan-8-yl)-4-oxoquinoline-3-carboxylic Acid (*VIa*)

A mixture of *IIIa* (2.7 g, 10 mmol), *Vc* (4.3 g, 30 mmol) and pyridine (30 ml) was stirred at 110°C for 40 h. Then pyridine was evaporated under reduced pressure and the oily residue was dissolved in ethanol and precipitated with dry ether. The formed precipitate was filtered off, washed with ethanol and ether. Crystallization from ethanol using charcoal yielded 2.4 g (64%) of white crystals; m.p. 214.5–216°C. For $C_{19}H_{21}FN_2O_5$ (376.4) calculated: 60.63% C, 5.62% H, 5.05% F, 7.44% N; found: 60.65% C, 5.72% H, 5.06% F, 7.18% N. 1H NMR spectrum (per-deuterated dimethylsulfoxide, 3-trimethylsilylpropionic acid): 1.44 t, 3 H (CH_3 , $J = 7$); 1.85 bt, 4 H ($H-3'$, $H-5'$); 3.20 bt, 4 H ($H-2'$, $H-6'$); 3.96 s, 4 H ($O-CH_2$); 4.60 q, 2 H ($N-CH_2$, $J = 7$); 7.20 d, 1 H ($H-8$, $J_{H,F} = 7$); 7.85 d, 1 H ($H-5$, $J_{H,F} = 12$); 8.95 s, 1 H ($H-2$). IR spectrum: 1708 (COO), 1625 (C=O), 1518, 1485, 1450 (aromat. syst.), 1248, 1090 (C—O—C), 978 (COOH). UV spectrum, λ_{\max} ($\log \epsilon$): 282 (3.37), 226 (2.76), 207 (2.93).

1-Cyclopropyl-6-fluoro-1,4-dihydro-7-(1,4-dioxa-8-azaspiro-[4,5]decan-8-yl)-4-oxoquinoline-3-carboxylic Acid (*VIb*)

Using procedure described for *VIa* (reaction time 48 h) compound *VIb* was prepared in 67% yield; m.p. 200.5–203°C. For $C_{20}H_{21}FN_2O_5$ (388.4) calculated: 61.85% C, 5.45% H, 4.89% F, 7.21% N; found: 61.45% C, 5.60% H, 4.69% F, 7.61% N. IR spectrum: 1723 (COO), 1625 (C=O), 1548, 1490 (aromat. syst.), 1040 (C—O—C), 948 (COOH). UV spectrum, λ_{\max} ($\log \epsilon$): 320 (3.08), 281 (3.64), 224 (3.07), 206 (3.26).

1-Ethyl-6,8-difluoro-1,4-dihydro-7-(1,4-dioxa-8-azaspiro-[4,5]decan-8-yl)-4-oxo-quinoline-3-carboxylic Acid (*VIc*)

A mixture of *IIIc* (0.54 g, 2 mmol), *Vc* (0.86 g, 6 mmol), and pyridine (10 ml) was stirred at 50–60°C for 3 h. Crystals formed after cooling were collected by filtration and recrystallized from ethanol; yields 0.6 g (76%), m.p. 247.5–252°C. For $C_{19}H_{20}F_2N_2O_5$ (394.4) calculated:

TABLE IV
UV spectra of fluoroquinolone derivatives

Compound	λ_{\max} ($\log \epsilon$)
<i>If</i>	330 (3.06), 314 (3.11), 282 (3.67), 225 (3.14), 205 (3.29)
<i>Ig</i>	315 (3.12), 282 (3.67), 224 (3.09), 205 (3.30)
<i>Ih</i>	330 (3.57), 318 (3.21), 208 (3.35)
<i>IIb</i>	323 (3.17), 297 (3.58), 225 (3.29)
<i>VId</i>	281 (3.64), 226 (3.08), 206 (2.95)
<i>VIe</i>	320 ^a (3.01), 281 (3.59), 223 ^a (2.97)
<i>VIIf</i>	290 (3.56), 222 (3.19), 208 (3.28)
<i>VIIb</i>	298 (3.55), 225 (3.27)

^a Shoulder.

57.87% C, 5.11% H, 9.63% F, 7.10% N; found: 57.58% C, 4.81% H, 9.65% F, 6.79% N. IR spectrum: 1 720 (COO), 1 620 (C=O), 1 530, 1 475, 1 460 (aromat. syst.), 1 080 (C—O—C), 945 (COOH). UV spectrum, λ_{max} (log ϵ): 290 (3.54), 223 (3.18), 207 (3.26).

9-Fluoro-2,3-dihydro-10-(1,4-dioxa-8-azaspiro[4,5]decan-8-yl)-
-3-methyl-7-oxo-7*H*-pyrido[1,2,3-*d*][1,4]benzoxazine-6-carboxylic Acid (*VIIa*)

Using procedure described for *VIc* (reaction time 24 h) compound *VIIa* was prepared in 96% yield, m.p. 253–256°C. For $C_{20}H_{21}FN_2O_6$ (404.4) calculated: 59.40% C, 5.24% H, 4.70% F, 6.93% N; found: 58.74% C, 5.50% H, 4.71% F, 6.64% N. IR spectrum: 1 725 (COO), 1 623 (C=O), 1 530, 1 492, 1 482, 1 460 (aromat. syst.), 1 092 (C—O—C), 960 (COOH). UV spectrum, λ_{max} (log ϵ): 298 (3.49), 225 (3.19); λ_{inf1} 325 (3.09).

General Procedure for Preparation of *VIId*, *VIe*, *VIf*, and *VIIf*

A mixture of 1 mmol of the respective ketal (*VIa*, *VIb*, *VIc*, *VIIa*), ethanol (10 ml), water (20 ml), and a catalytic amount of *p*-toluenesulfonic acid monohydrate was refluxed until the starting material was present (Merck pre-coated TLC plates silica gel 60 F-254, dichloromethane–methanol–acetic acid 95 : 2.5 : 2.5). Then the mixture was cooled down, the insoluble portion was filtered off and crystallized from ethanol. Reaction time, yields and elemental data are in Table II. Results of IR (Table III), and UV spectra (Table IV) were in accordance with the proposed structures.

General Procedure for Preparation of oximes *If*, *Ig*, *Ih*, and *IIb*

To a solution of 1 mmol of the respective oxo derivative (*VIId*, *VIe*, *VIIf*, *VIIf*) in ethanol (300 ml) was at 60°C added a solution of 1 mmol of hydroxylamine in 50 ml of ethanol. The hydroxylamine solution was prepared in usual way from hydroxylamine hydrochloride and sodium ethanolate. The reaction mixture was stirred at room temperature until the starting material was present (Merck pre-coated TLC plates silica gel 60 F-254, dichloromethane–methanol–acetic acid 95 : 2.5 : 2.5) and evaporated to dryness. The residue was triturated with water, insoluble portion was filtered off and washed with water and ethanol. Recrystallization from ethanol yielded white crystals. M.p., yields, and elemental data are in Table II. Results of IR (Table III) and UV spectra (Table IV) were in accordance with the proposed structures.

REFERENCES

1. Albrecht R.: *Progr. Drug Res.* **21**, 9 (1977).
2. Rádl S.: *Pharmac. Ther.* **48**, 1 (1990).
3. Koga H., Itoh A., Murayama S., Suzue S., Irikura T.: *J. Med. Chem.* **23**, 1358 (1980).
4. Uno T., Okuno T., Taguchi M., Iuchi K., Kawahata Y., Sotomura M., Tsukamoto G.: *J. Heterocycl. Chem.* **26**, 393 (1989).
5. Grohe K., Zeiler H., Metzger K. (Bayer A.-G.): *Eur. Pat. Appl.* 0 078 362 (1983).
6. Irikura T., Koga H., Murayama S. (Kyorin Pharmaceutical Co., Ltd.): *U.S. 4 398 029* (1981).
7. Hayakawa I., Hiramitsu H., Tanaka Y.: *Chem. Pharm. Bull.* **32**, 4907 (1984).

Translated by the author (S.R.).